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ON SUMS OF SEVEN CUBES 

F. BERTAULT, 0. RAMARE, AND P. ZIMMERMANN 

ABSTRACT. WNe show that every integer between 1290741 anld 3.375 x 1012 is 
a sum of 5 nonnegative cubes, fromii wvhich we deduce that every integer which 
is a cubic residue modulo 9 and an invertible cubic residue modulo 37 is a sum 
of 7 nonnegative cubes. 

INTRODUCTION 

In 1770 E.Waring stated in "Meditationes Algebraicae" that every integer could 

be written a,s a sum of 9 nonnegative cubes. While the fact that a finite number of 

cubes is enough to represent any integer as a sum was proved by E.Maillet in 1895, 

A.Wieferich in 1909 established that 9 cubes are indeed enough (though his proof 

contained a gap filled by A.J.Kempner [7]). Moreover E.Landau proved in 1909 

that 8 cubes are enough to represent all sufficiently large integers and L.E.Dickson 

showed in 1939 that the only exceptions to Landau's Theorem are the integers 23 

and 239. A thorough historical account of the problemn may be found in Chapter 
XXV of [5]. In 1941, Y.Linnik proved that every large enough integer is a sum of 

7 cubes. It is conjectured that every such integer is a sum of at most 5 cubes, and 

heuristical (cf. [11], [2], [3]) and probabilistic (cf. [8])-arguments even suggest that 

integers larger that 1014 are in fact sums of 4 cubes. 

In 1922 G.H.Hardy and J.E.Littlewood [6] used the circle method to get the 

number of distinct representations of an integer as a sum of 9 cubes, but it was 

only in 1986 that by sharpening this method R.C.Vaughan obtained [12] the number 

of representations of a large integer as a sum of 8 cubes. In 1989 the same author 

obtained (cf. [13] and [14]) a lower bound of the proper order of magnitude for the 

number of representations of a large integer as a sum of 7 cubes. Though what 

"large" means in the above results is not known, there is little doubt that small 

integers will not be covered by it. 

To recall the niumerical results known on suins of cubes, let us denote by Ck a 

generic integer which can be written as a sum of k, or fewer, positive cubes. It is 

believed that 

C88 < 454, C- < 8 042, C < 1 290 740, 

and this has been verified up to 107, cf. [9] and [11]. The first result of this work 

is the following theorem. 

Theorem 1. Euery integer between 1 290 741 and 3.375 1012 is a sum of 5 cutbes. 
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Details of the computations can be found in section V. Independent of this work, 
J.M.Deshouillers, F.Hennecart and B.Landreau have shown that the above theorem 
holds with 1016 instead of 3.375. 1012, which confirms our computations. This yields, 
by using the "greedy algorithm" (cf. Lemma 3), that every integer between 455 
and 2.50 1026 is a sum of 7 cubes. At the end of the paper we give a table of the 
integers less than 2.50. 1026 which are not sums of 7 nonnegative cubes. 

The main idea involved in proving that a nonnegative integer n can be written 
as a sum of 7 cubes relies on the identity already used by E.Maillet (cf. Lemma 6) 
to prove that every integer is a sum of 21 cubes. Different authors used this to 
deduce that every (sometimes large enough) integer in some arithmetic progression 
is a sum of 7 cubes. Among these the work of W.S.Baer in 1913 (cf. [1] and [7]) 
seems to be the most important. Y.Linnik also used a perturbation of this identity, 
and his proof was considerably simplified by G.L.Watson in 1951. Their proofs 
were ineffective. This problem was removed by K.S.McCurley in 1984; he was able 
to prove that every integer > exp(1 077 334) is a sum of 7 cubes. Even under 
the Generalized Riemann Hypothesis this line of attack does not offer any hope for 
dealing with integers < 10100. 

Maillet's identity leads to two problems: it requires one to know a localized 
divisor of an integer and to know that some cube root modulo some integer lies in 
a specific interval. The first problem is easily solved by noticing that any integer is 
a cube modulo any prime- 2[3] and that we know the distribution of such primes 
well enough. However the second one (of localized roots) remains. Note also that 
G.L.Watson introduced in 1951 a device which enables us to extend considerably 
the interval to which this root should belong. By assuming that n is divisible by 
a small square or a small cube, we can relax this condition completely. We show 
here how to use another kind of argument, namely that the distribution of the cube 
roots of an element modulo 9 is very regular (they are well spaced). We will get 

Theorem 2. Every integer which is a cubic residue modulo 9 and an invertible 
cubic residue modulo 37 is a sum of 7 nonnegative cubes. 

The invertible cubic residues modulo 37 are ?1, ?6, ?8, ?10, ?11 and ?14. 
The integer 37 is not magical: it is a prime number po congruent to 1 modulo 

3 for which an effective version of the prime number theorem modulo 3po exists. 
Moreover there exist three residues r1, r2 and r3 modulo p which have the same cube 
and any interval modulo 1 of length > (3/4) 3 /2 contains at least one of them. The 
limiting length is explained by Lemma 6 below. It can be shown that every large 
enough prime number has the last two properties, 37 and 43 being the two smallest 
ones, but there is no good explicit version. For the modulus 3 x 37 the material of 
[10] and some additional verifications provide us a decent explicit version. 

Since every integer larger than 455 should be a sum of 7 cubes, we introduce the 
following parameter to quantify the portion of integers that are representable: 

6 = min Card{rn E [455, 454 + N], n. is a sum of 7 cubes}, 
N>1N 

where N ranges over integers. Theorem 2 immediately yields 

Corollary. We have 6 > 4 

Note that 47 = 0.1083.... 
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I. THE GREEDY ALGORITHM 

Lemma 3. Assume every integer between 1 290 741 and B > 107 is a sum of 5 
nonnegative cubes. Then every irnteger n satisfyizng 

)3/2 
~~)3/2 

455 < n < (\?(B/3-430 247) 3/2+ 427 566 + 8 043 

is a sum of at most 7 nonnegative cubes. 

Proof. We need a preliminary result whose proof is clear: 
If a > 0 andn > a+ 28, then a < n-m3 < a+3(n -a) where m. [(nr-a)3. 
Then, if n < B, there is nothing to prove. Otherwise, consider 

ni = n - [(nr-8 043)3]3. 

If ni < B, then the proof is over, otherwise consider further 

n2 = n- [(n, - 1 290 741) _3 

which is < B. C 

For B = 3.375 1012, it yields 455 < n < 2.50 1026. 

II. PRIMES IN ARITHMETIC PROGRESSIONS MODULO 111 

As a matter of notation, we use 

0(y;kj)k E Logp. 
p=-[k] 

p<y 

Lemma 4. Let f be an integer prime to 111. For y > 247 164, the irnterval [y, 44y 
contaizns a prime number congruent to f modulo 111. 

Proof. For y > 1013, this comes from [10]: 

0 (Y 11:T - Y '< 0.011261y. 

For y E [247 164, 1013], one directly constructs primes congruent to f modulo 111 
such that their successive quotients are less than 44/43. C 

III. REDUCTION TO A PROBLEM OF LOCALIZED DIVISORS AND LOCALIZED ROOTS 

The proof of the following lemmas draws on Watson's proof ([15]). 

Lemma 5. Let n be a positive integer. Assume n = 0, ?1[9]. Let t and a be 
positive integers and , be a positive real number sati.sfying 

(i) n-t-1[2], n -t_ 0[3a], 

(ii) (a, 6) =1, (3)n3 < 3a < /3nl, t 11 3 

(iii) r Eo [0,riregaiv cues 

Then n i's a sum of seven nonnegative cubes. 
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Proof. Our hypothesis on n says that n is a cube modulo 9. Note moreover that 
if x is a cube modulo 9 then X3 x[9]. We thus have 0 _ (n- t3)3[9], i.e. 

n =-n3-=t9-=t3[9], which gives n t3[9]. Put N = n-t3. Then 8N = 8[16] and 

8N =0[9a]. Thus c defined by 8N 18a(9a2 + c) is _ 3[8]. We also have 

1+ c 4n- t3 
1 + ~~~E [1, 2], 

9a2 3 (3a)3 

so that c2 < 9a2. We can write c2 = + y2 + Z2 with x-y z 1[2], and thus 

t3 (3a + x )+ (3a ) 3 ( 3a+ + )3 

(2 ) (2 ) (2 ) 

as required E 

IV. PROOF OF THEOREM 2 AND ITS COROLLARY 

Here we assume that n is a cube modulo 9 and an invertible cube modulo 37. 
Let s be a fixed cube root of n modulo 37, the other ones being s(-1 + -_3)/2 
and s(-1 - -3)/2, where VS-3 is a square root of -3 modulo 37. Since 21 is such 
a square root, the three cube roots of n are s, 10s and 26s. 

We use Lemma 5 and take a 37 x p, where p is prime number congruent to 2 
modulo 3 and congruent to the inverse of 6s modulo 37. 

The system of equations -t - __ 1 [2 and n -t3 ![3 x 37 x p] admits 3 solutions 
modulo 2 x 3 x 37 x p, say t1, t2 and t3. Furthermore 

__ __ 37 t- 6p t 
+ P modl 1, 

6p x 37 6p 37 

where 37 is the inverse of 37 modulo 6p and 6p is the inverse of 6p modulo 37. Note 
first that 36pi is independent of i. Secondly, since t- modulo 37 takes the values 

s, 10s and 26s, recalling our choice of p, we see that the second term above is 

37 or 37. The length of an interval modulo 1 containing none of the ti is thus 10 26Th7 l 6px37 
< 16/37, i.e. any interval having a larger length contains one of the three roots. 
In particular the interval [0,16/37] contains such a root, which is the t we need to 
apply Leinma 2. The proof is then almost complete. Choose the parameters 

21 2 x 16 3 33-1 
cv(->3 ~3 ]3 

3 ~~37 4 

- = - = 1.0240177... and X - (23)/3 
3 x37 

Since > 44, Lemma 4 gives us that 

0((X; 3 x 37,6s) - O(X; 3 x 37,6s) > 0 

if 247 164 < X. i.e. n > 3.1 1022, which we can assume from Theorem 1. Lemma 2 
now implies Theorem 2. 

To prove its corollary, we proceed as follows. By Theorem 2, there exist at 
least 36 arithmetic progressions modulo 333 containing only sums of 7 cubes; more- 
over all integers in [455,495] are sums of 7 cubes, so that 8N = 1 for 1 < N < 41. 
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If N is larger than 41, we let k =[N31 ] and we have N8N > 41 + 36k (since there 
are 41 sums of 7 cubes in [455,495] and k such sums in each of the 36 arithmetic 
progressions between 496 and 454+ N). We thus have N&N > 41+36 (N331 1) > 
4 
37' 

V. ABOUT THE PROOF OF THEOREM 1 

To prove that every integer between 1 290 741 and 150003 = 3.375 1012 is a sum 
of 5 cubes, we have first computed tables of the sums of 2, 3 and 4 nonnegative 
cubes up to 109: 

sums of h cubes < n h = 2 h = 3 h = 4 
106 4454 107875 713364 
107 20546 1037872 8259118 
108 95090 10172774 91057713 
109 440959 100735175 966039273 

Then for each interval a3 < x < (a + 1)3 for 108 < a < 15000, we have checked 
that x can be written as a sum of five cubes, by first looking at the table of sums 
of four cubes for x -a3, in case of failure for x - (a - 1)3, and so on. If the table 
of four cubes was too small we proceeded by subtracting the greatest cube from 
x - (a - k)3, and looking in the table of sums of three cubes, and so on. Therefore 
we were looking for a representation x = (a - k)3 + C4 where C4 denotes a sum 
of four cubes with the smallest k. Let us denote this value k(x). 

The program that produces the tables of sums of cubes, the checking pro- 
gram and the histograms of k(x) for 108 < a < 15000 can be obtained from 
http://www.loria.fr/-zimmerma/records/cubes.html. The following table 
gives the value of the largest x found in the interval [1083, 150003] such that 
k(x) = m for each m in [6,18]. The maximal and average values of k(x) on each 
interval a3 < x < (a + 1)3 are displayed on Figure 1. Figure 2 shows for each I in 
[0 - 6] the percentage of x in [a3, (a + 1)3] such that k(x) = 1. 

m largest x < 3.375 1012 such that k(x) = n 
6 a=13637, x = a3 + 2018319 = 2536044484172 
7 a=7636, x = a3 + 94359676 445338035132 
8 a=6627, x a3 + 8276314 291047090197 
9 a=4768, x a3 + 822342 = 108395695174 
10 a=2765, x a3 + 97142 = 21139144267 
11 a=2473, x a3 + 784633 = 15124982450 
12 a=1921, x a3 + 7033521 = 7095986482 
13 a=1185, x a3 + 1002929 = 1665009554 
14 a=963, x a3 + 1516531 = 894572878 
15 a=810, x a3 + 1120900 532561900 
16 a=725, x = a3 + 718511 = 381796636 
17 a=645, x = a3 + 996097 269332222 
18 a=434, x a3 + 225636 81972140 

It appears from Figure 2 that for a 2[3], the percentage of x in [a3, (a+ 1)3 -1] 
such that k(x) = 2 (i.e. x - a3and x - (a - 1)3 are not sums of four cubes but 
x - (a - 2)3 is) is much lower than for other values of a. 
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Table of the integers which are not sum of 7 cubes and < 2.5. 1026 

In the second column of this table, we give the prime factor decomposition of 
the integer. 

15 = 3 5 _6 [9] 231=3.7.11 6[9] 
22=2.11 4 [9] 238=2 7 17 4 [9] 
23 = 23 5 [9] 239 = 239 _ 5 [9] 

50= 252 _ 5 [9] 303=3* 101 6(9] 

114=2*3*29- 6 [9] 364=227.13 4[9] 
167= 167 -5 9] 420=223.5.7_ 6 (9] 

175= 527 4([9] 
1756= 52* 3 6([9] 428 = 22107 5 [9] 
1862=2253 (1 6 [9] 454= 2 .227 4 [9] 
212 2 253 _5 191 

1 00 % 1=0O 

0.67% 

0.0045 Ic- 

1=3 

0.00003% 

1=4 

1=6 

1=5 

2000 4000 6000 8000 10000 12000 14000 

FIGURE 1. Maximal and average values of k(x) on each interval 
a3 < X < (a+ 1)3 
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FIGURE 2. Percentage of x in [a3, (a + 1)3] such that k(x) = 1, for 
each 1 in [O - 6] 
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